Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hoong-Kun Fun, ${ }^{\text {a* }}$ Suchada Chantrapromma, ${ }^{\text {b }} *$ Zhong-Lin Lu, ${ }^{c}$ Alexei A. Neverov ${ }^{c}$ and R. Stan Brown ${ }^{\text {c }}$

${ }^{\text {a X }}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {c }}$ Department of Chemistry, Queen's University, Kingston,
Ontario, Canada K7L 3N6
Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
ωR factor $=0.076$
Data-to-parameter ratio $=22.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Chloro[2-(dimethylamino)benzyl- $\left.\kappa^{2} \mathrm{C}^{1}, N\right]$ -[4-(dimethylamino)pyridine- κN^{1}]palladium(II)

The title palladacycle, $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right] \quad$ or $[\mathrm{Pd}(\mathrm{DMBA}) \mathrm{Cl}(\mathrm{DMP})][\mathrm{DMBA}$ is 2-(dimethylamino)benzyl, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and DMP is 4-(dimethylamino)pyridine, 4- $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$], crystallizes with three crystallographically independent but conformationally almost identical molecules $(A, B$ and $C)$ in the asymmetric unit. In all three molecules, the Pd atoms are coordinated by slightly distorted square-planar arrays of two N (pyridine and amine), benzyl C and Cl atoms. The pyridine and amine N atoms are positioned trans to one another. The dihedral angles between benzene and pyridine rings are 7.47 (17), 7.34 (16) and $10.83(15)^{\circ}$ in molecules A, B and C, respectively. In the crystal structure, weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions stabilize the structure.

Comment

The synthesis, characterization and study of cyclopalladated compounds have received much attention in recent years due to their importance in organic synthesis, organometallic catalysis and molecular materials (Dupont et al., 2005; Beletskaya \& Cheprakov, 2004; Bedford, 2003). For example, cyclopalladated complexes containing 2-pyridylbenzene or aryl oxime ligands are effective catalysts for the degradation of thiophosphate pesticides (Kim et al., 2006; Kazankov et al., 2000). Palladacyles with aryl oxime ligands also efficiently catalyze carbon-carbon coupling reactions, even in aqueous solution (Alacid et al., 2006). As part of our interest in the catalytic methanolysis of thiophosphate (Lu et al., 2005), we report here the crystal structure of the title compound, (I) (Fig. 1).

(I)

The title complex crystallizes with three crystallographically independent molecules, A, B and C, in the asymmetric unit, each with slightly different bond lengths and angles (Fig. 1 and Table 1). The ligand bond distances and angles in (I) are within normal ranges (Allen et al., 1987). The Pd atom displays

Received 24 October 2006
Accepted 27 October 2006

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level. H atoms have been omitted for clarity.
the expected distorted square-planar coordination, with the pyridine and amine N atoms positioned trans to one another. The dihedral angle between the two planes defined by $\mathrm{C} 1 / \mathrm{Pd} 1 /$ N 1 and $\mathrm{N} 2 / \mathrm{Pd} 1 / \mathrm{Cl} 1$ is $3.14(14)^{\circ}$ in molecule $A, 2.38(14)^{\circ}$ in molecule B and 13.19 (12) ${ }^{\circ}$ in molecule C. The $\mathrm{Pd}-\mathrm{C}, \mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{N}$ (amine and pyridine) bond lengths fall within the ranges of the values reported for other cyclopalladated derivatives of N, N-dimethylbenzylamine (Lu et al., 2005; Mentes et al., 2004) and aryl oxime ligands (Ryabov et al., 1992). The five-membered palladacyclic ring is slightly strained, with $\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1$ bond angles in the range $82.36(11)-83.30(11)^{\circ}$. The dihedral angle between the pyridine ring and the palladacycle plane ($\mathrm{Pd} 1 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7$) is $83.74(14)^{\circ}$ in molecule A [81.85 (14) ${ }^{\circ}$ in molecule B and $76.80(14)^{\circ}$ in molecule $C]$, larger than those in the corresponding palladacycles with pyridine ligands $\left(49.2^{\circ}\right.$ for $\quad\left[\mathrm{Pd}\left\{\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.C^{1}, N\right\}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \mathrm{Cl}\right]$; Lu et al., 2005). The dihedral angle between the benzene and pyridine rings is $7.47(17)^{\circ}$ in molecule A, $7.34(16)^{\circ}$ in molecule B and $10.83(15)^{\circ}$ in molecule C.

The crystal structure of (I) is stabilized by weak intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming a three-dimensional network (Fig. 2 and Table 2).

Experimental

To a solution of di- μ-chloro-bis(N, N-dimethylaminobenzyl$\left.C^{1}, N\right)$ dipalladium(II) ($95.0 \mathrm{mg}, 0.172 \mathrm{mmol}$) (Mentes et al., 2004) in benzene (20 ml) was added 4-dimethylaminopyridine (1.2 equivalents). The mixture was stirred at room temperature for 3 h and then filtered through Celite. The Celite was washed with another 20 ml of dichloromethane and the solvents removed. The white solid residue was re-crystallized from a mixture of hexanes and dichloromethane (4:1 v / v) to give (I) in 76\% yield. Single crystals of X-ray diffraction quality were recrystallized by the slow diffusion of hexane into a dichloromethane solution of (I). Analysis, calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{Pd}: \mathrm{C} 48.26$, H 5.57 , N 10.55%; found: C 48.01, H 5.71, N 10.43%.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right] \quad Z=12$
$M_{r}=398.24$
Monoclinic, $P 2_{1} / n$
$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$
$a=15.3217$ (2) \AA
$b=20.5634$ (2) A
$c=17.1800(2) \AA$
$\beta=114.907$ (1) ${ }^{\circ}$
$V=4909.4$ (1) \AA^{3}
Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.737, T_{\max }=0.918$
Mo $K \alpha$ radiation
$\mu=1.29 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Block, colourless
$0.25 \times 0.16 \times 0.07 \mathrm{~mm}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.018 P)^{2}\right. \\
& \quad+9.9822 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.28 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.90 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1 $A-\mathrm{C} 1 A$	$1.984(3)$	$\mathrm{Pd} 1 B-\mathrm{Cl} 1 B$	$2.4237(8)$
$\mathrm{Pd} 1 A-\mathrm{N} 2 A$	$2.033(2)$	$\mathrm{N} 1 B-\mathrm{C} 7 B$	$1.498(4)$
$\mathrm{Pd} 1 A-\mathrm{N} 1 A$	$2.078(2)$	$\mathrm{C} 2 B-\mathrm{C} 7 B$	$1.514(4)$
$\mathrm{Pd} 1 A-\mathrm{Cl} 1 A$	$2.4463(8)$	$\mathrm{Pd} 1 C-\mathrm{C} 1 C$	$2.001(3)$
$\mathrm{N} 1 A-\mathrm{C} 7 A$	$1.497(4)$	$\mathrm{Pd} 1 C-\mathrm{N} 2 C$	$2.038(2)$
$\mathrm{C} 2 A-\mathrm{C} 7 A$	$1.489(4)$	$\mathrm{Pd} 1 C-\mathrm{N} 1 C$	$2.083(2)$
$\mathrm{Pd} 1 B-\mathrm{C} 1 B$	$1.989(3)$	$\mathrm{Pd} 1 C-\mathrm{Cl} 1 C$	$2.4130(8)$
$\mathrm{Pd} 1 B-\mathrm{N} 2 B$	$2.022(3)$	$\mathrm{N} 1 C-\mathrm{C} 7 C$	$1.497(4)$
$\mathrm{Pd} 1 B-\mathrm{N} 1 B$	$2.080(2)$	$\mathrm{C} 2 C-\mathrm{C} 7 C$	$1.500(4)$
$\mathrm{C} 1 A-\mathrm{Pd} 1 A-\mathrm{N} 2 A$	$92.91(11)$	$\mathrm{C} 1 B-\mathrm{Pd} 1 B-\mathrm{Cl} 1 B$	$176.38(9)$
$\mathrm{C} 1 A-\mathrm{Pd} 1 A-\mathrm{N} 1 A$	$83.30(11)$	$\mathrm{N} 2 B-\mathrm{Pd} 1 B-\mathrm{Cl} 1 B$	$88.72(8)$
$\mathrm{N} 2 A-\mathrm{Pd} 1 A-\mathrm{N} 1 A$	$176.19(10)$	$\mathrm{N} 1 B-\mathrm{Pd} 1 B-\mathrm{Cl} 1 B$	$95.22(7)$
$\mathrm{C} 1 A-\mathrm{Pd} 1 A-\mathrm{Cl} 1 A$	$174.58(9)$	$\mathrm{C} 1 C-\mathrm{Pd} 1 C-\mathrm{N} 2 C$	$91.73(11)$
$\mathrm{N} 2 A-\mathrm{Pd} 1 A-\mathrm{Cl} 1 A$	$91.26(7)$	$\mathrm{C} 1 C-\mathrm{Pd} 1 C-\mathrm{N} 1 C$	$82.36(11)$
$\mathrm{N} 1 A-\mathrm{Pd} 1 A-\mathrm{Cl} 1 A$	$92.50(7)$	$\mathrm{N} 2 C-\mathrm{Pd} 1 C-\mathrm{N} 1 C$	$172.76(10)$
$\mathrm{C} 1 B-\mathrm{Pd} 1 B-\mathrm{N} 2 B$	$92.89(11)$	$\mathrm{C} 1 C-\mathrm{Pd} 1 C-\mathrm{Cl} C$	$173.87(9)$
$\mathrm{C} 1 B-\mathrm{Pd} 1 B-\mathrm{N} 1 B$	$83.13(11)$	$\mathrm{N} 2 C-\mathrm{Pd} 1 C-\mathrm{Cl} C$	$91.92(7)$
$\mathrm{N} 2 B-\mathrm{Pd} 1 B-\mathrm{N} 1 B$	$175.97(10)$	$\mathrm{N} 1 C-\mathrm{Pd} 1 C-\mathrm{Cl} C$	$94.34(7)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 2 A / \mathrm{C} 10 A-\mathrm{C} 14 A$ and $\mathrm{N} 2 C / \mathrm{C} 10 C-\mathrm{C} 14 C$ pyridine rings, respectively, and $C g 3, C g 4$ and $C g 5$ are the centroids of the $\mathrm{C} 1 A-\mathrm{C} 6 A, \mathrm{C} 1 B-\mathrm{C} 6 B$ and $\mathrm{C} 1 C-\mathrm{C} 6 C$ benzene rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 A-\mathrm{H} 7 A B \cdots \mathrm{~N} 3 A^{\mathrm{i}}$	0.97	2.57	$3.519(4)$	167
$\mathrm{C} 8 A-\mathrm{H} 8 A B \cdots \mathrm{Cl} 1 A$	0.96	2.71	$3.267(3)$	117
$\mathrm{C} 5 B-\mathrm{H} 5 B A \cdots \mathrm{Cl} 1 C^{\mathrm{ii}}$	0.93	2.83	$3.738(3)$	168
$\mathrm{C} 15 A-\mathrm{H} 15 B \cdots \mathrm{Cl} 1 A^{\mathrm{iii}}$	0.96	2.67	$3.617(3)$	171
$\mathrm{C} 6 B-\mathrm{H} 6 B A \cdots \mathrm{~N} 2 B$	0.93	2.62	$3.108(4)$	113
$\mathrm{C} 8 B-\mathrm{H} 8 B A \cdots \mathrm{~N} 3 B^{\mathrm{iv}}$	0.96	2.60	$3.482(4)$	153
$\mathrm{C} 8 B-\mathrm{H} 8 B C \cdots \mathrm{Cl} 1 B$	0.96	2.76	$3.329(4)$	118
$\mathrm{C} 3 C-\mathrm{H} 3 C A \cdots \mathrm{Cl} 1 C^{\mathrm{v}}$	0.93	2.82	$3.476(3)$	129
$\mathrm{C} 9 C-\mathrm{H} 9 C C \cdots \mathrm{Cl} 1 C$	0.96	2.73	$3.264(3)$	116
$\mathrm{C} 9 A-\mathrm{H} 9 A B \cdots C^{\mathrm{ii}}$	0.96	2.76	$3.580(3)$	143

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots C g 4^{\text {iiI }}$	0.93	2.74	$3.522(4)$	142
C15A-H15A $\cdots C g 1^{\text {iii }}$	0.96	3.02	$3.537(3)$	116
C9B-H9BB $\cdots C g 3^{\text {iii }}$	0.96	2.98	$3.766(5)$	140
C10B-H10B $\cdots C g 5$	0.93	3.11	$3.693(4)$	122
C11B-H11B $\cdots C g 5$	0.93	3.00	$3.625(4)$	126
C6C-H6CA $\cdots C g 2$	0.93	2.99	$3.700(3)$	134
C11C-H11C $\cdots C g 4$	0.93	2.61	$3.414(4)$	145
Symmetry codes:	(i)	$x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2} ;$	(ii)	$-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$
$-x,-y+1,-z+1 ;$ (iv) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;\left(\right.$ vii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.				

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms or $1.2 U_{\text {eq }}(\mathrm{C})$ for the remaining H atoms. A rotatinggroup model was used for the methyl groups. The maximum residual electron-density peak is located $0.77 \AA$ from atom Pd1B.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and the National Science and Engineering Research Council of Canada and Queen's University for the support of this work.

References

Alacid, E., Alonso, D. A., Botella, L., Najera, C. \& Pacheco, M. C. (2006). Chem. Rec. 6, 117-132.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bedford, R. B. (2003). Chem. Commun. pp. 1787-1796.
Beletskaya, I. P. \& Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 40554082.

Figure 2
The crystal packing of (I), showing the molecular network. Hydrogen bonds are drawn as dashed lines.

Bruker (2005). APEX2 (Version 1.27), SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dupont, J., Consorti, C. S. \& Spencer, J. (2005). Chem. Rev. 105, 2527-2571.
Kazankov, G. M., Sergeeva, V. S., Efremenko, E. N., Alexandrova, L., Varfolomeev, S. D. \& Ryabov, A. D. (2000). Angew. Chem. Int. Ed. 39, 31173119.

Kim, M., Picot, A. \& Gabbaie, F. P. (2006). Inorg. Chem. 45, 5600-5606.
Lu, Z. L., Neverov, A. A. \& Brown, R. S. (2005). Org. Biomol. Chem. 3, 33793387.

Mentes, A., Kemmit, R. D. W., Fawcett, J. \& Russell, D. R. (2004). J. Mol. Struct. 693, 241-246.
Ryabov, A. D., Kanzankov, G. M., Yatsimirsky, A. K., Kuzmina, L., Burtseva, O. Y., Dvortsova, N. V. \& Polyakov, V. A. (1992). Inorg. Chem. 31, $3083-$ 3090.

Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

